MICROCONTROLLER-BASED LINE FOLLOWER ROBOT FOR AUTOMATED AGRICULTURAL GOODS TRANSPORTATION SYSTEM
Politeknik Negeri Padang
Politeknik Negeri Padang
Politeknik Negeri Padang
Politeknik Negeri Padang
Politeknik Enjiniring Pertanian Indonesia
DOI:
https://doi.org/10.56943/jmr.v4i4.902As technological advancement continues to accelerate, automation-based solutions have become increasingly relevant for implementation in the Indonesian agricultural sector. One manifestation of this technological progress is the utilization of robotic systems to support various agricultural activities. This research aims to design and develop a microcontroller-based line follower robot capable of automatically following designated paths to facilitate the transportation of tomato harvests in agricultural areas. The study employs an experimental approach encompassing hardware design, electronic circuit design, software programming, and mechanical assembly. The robot integrates a five-sensor TCRT5000 infrared array for line tracking navigation and a TCS3200 color sensor for tomato classification based on ripeness indicators. Testing results demonstrated that temporal variations on the red and yellow paths were influenced by braking maneuver differences, sensor color response characteristics, and motor speed during turning operations. From fifteen color sensor trials, the system achieved 66.6% accuracy with ten correct detections and five misclassifications. The combination of five line sensors (S0 to S4) successfully determined directional movement, functioning as the primary navigation system in conjunction with the color sensor for routing decisions at intersections. Testing of the L298N motor driver confirmed effective wheel control, producing straight-line motion, left and right pivot rotations, and complete stops according to programmed motor input combinations. The developed system demonstrates the feasibility of integrating line-following navigation with color-based classification for automated post-harvest transportation in agricultural settings.
Keywords: Agriculture Automation Color Sensor Line Follower Robot Microcontroller Tomato Transportation
Alam, E. N. (2020). IoT in Agriculture Industry. Jurnal Sistem Cerdas, 3(1), 36–42. https://doi.org/10.37396/JSC.V3I1.57
Amorim, J. S. J. C. C., Fernandes, J. H. O., Canella, A. L. C., Santos, T. M. B., Lima, J., & Pinto, M. F. (2023). Control Tunning Approach and Digital Filter Application for Competitive Line Follower Robot. Proceedings - 2023 Latin American Robotics Symposium, 2023 Brazilian Symposium on Robotics, and 2023 Workshop of Robotics in Education, LARS/SBR/WRE 2023, 597–602. https://doi.org/10.1109/LARS/SBR/WRE59448.2023.10332987
Arad, B., Balendonck, J., Barth, R., Ben-Shahar, O., Edan, Y., Hellström, T., Hemming, J., Kurtser, P., Ringdahl, O., Tielen, T., & van Tuijl, B. (2020). Development of a sweet pepper harvesting robot. Journal of Field Robotics, 37(6), 1027–1039. https://doi.org/10.1002/ROB.21937;WGROUP:STRING:PUBLICATION
Baballe, M. A., Adamu, A. I., Bari, A. S., & Ibrahim, A. (2023). PRINCIPLE OPERATION OF A LINE FOLLOWER ROBOT. Far East Journal of Electronics and Communications, 27, 1–12. https://doi.org/10.17654/0973700623001
Baharuddin, M. Z., Abidin, I., Sulaiman, S., Mohideen, K., Siah, Y. K., Tan, J., & Chuan, T. (2006). Analysis of Line Sensor Configuration for the Advanced Line Follower Robot.
Barrett, D. M., Weakley, C., Diaz, J. V., & Watnik, M. (2007). Qualitative and nutritional differences in processing tomatoes grown under commercial organic and conventional production systems. Journal of Food Science, 72(9). https://doi.org/10.1111/J.1750-3841.2007.00500.X
Basri, M., & Wahira, I. (2022). Robot Line Follower Pemindah Barang Berdasarkan Warna Berbasis Mikrokontroler. Jurnal Mosfet, 2(2), 11–15. https://doi.org/10.31850/jmosfet.v2i2.1973
Bent, L. van den, Coleman, T., & Babuška, R. (2025). Robotic Grasping of Harvested Tomato Trusses Using Vision and Online Learning. Proceedings - IEEE International Conference on Robotics and Automation, 13947–13953. https://doi.org/10.1109/ICRA57147.2024.10610089
Brigido, W. J. H., & Oliveira, J. M. P. de. (2025). The line follower robot: a meta-analytic approach. PeerJ Computer Science, 11. https://doi.org/10.7717/PEERJ-CS.2744/SUPP-2
Budijanto, A. (2018). PENGATURAN KECEPATAN MOTOR DC PADA ROBOT LINE FOLLOWER MENGGUNAKAN PULSE WIDTH MODULATION (PWM). Seminar Nasional Sistem Informasi (SENASIF), 2, 1162–1169. https://jurnalfti.unmer.ac.id/index.php/senasif/article/view/178
Cahyani, M. P. (2023). IOT DALAM SMART FARMING 4.0 UNTUK UPAYA TINGKATKAN EFESIENSI AGRIBISNIS. https://www.researchgate.net/publication/369378549_IOT_DALAM_SMART_FARMING_40_UNTUK_UPAYA_TINGKATKAN_EFESIENSI_AGRIBISNIS
Certhon. (2025). Artemy. Harvesting cherry tomatoes autonomously. Certhon. https://certhon.com/robot-harvesting/
Dirayati, F., Sari, R. A., & Purnomo, R. F. (2025). Perancangan dan Implementasi Sistem Smart Agriculture Berbasis Internet of Things untuk Meningkatkan Produktivitas Pertanian. Jurnal Media Informatika, 6(2), 863–872. https://doi.org/10.55338/JUMIN.V6I2.4982
Dumitru, N., Ciurezu-Gherghe, L., Copiluși, C., Geonea, I., & Dumitru, S. (2022). Theoretical and experimental study methods for a robotic system with deformable elements used in minimally invasive surgery. Mechanism and Machine Theory, 167. https://doi.org/10.1016/J.MECHMACHTHEORY.2021.104459
Engin, M., & Engin, D. (2012). Path planning of line follower robot. EDERC 2012 - Proceedings of the 5th European DSP in Education and Research Conference, 1–5. https://doi.org/10.1109/EDERC.2012.6532213
Gené-Mola, J., Llorens, J., Rosell-Polo, J. R., Gregorio, E., Arnó, J., Solanelles, F., Martínez-Casasnovas, J. A., & Escolà, A. (2020). Assessing the Performance of RGB-D Sensors for 3D Fruit Crop Canopy Characterization under Different Operating and Lighting Conditions. Sensors, 20(24). https://doi.org/10.3390/S20247072
GroW. (2025). GRoW Tomato Harvesting Robot | For picking, collecting and boxing your tomatoes. GroW. https://grow.ridder.com/
Handayani, T. P. (2015). RANCANG BANGUN SISTEM KEAMANAN PINTU RUMAHMENGGUNAKAN SWITCH MAGNETIK DENGAN MONITORING WEBBOOTSTRAP BERBASIS RASPBERRY PI. Politeknik Negeri Sriwijaya.
Hugeng, H., Trisnawarman, D., Irving, A., & Huntarso, Y. (2023). Enhanced IoT Solution System for Smart Agriculture in Indonesia. Green Intelligent Systems and Applications, 3(2), 111–125. https://doi.org/10.53623/GISA.V3I2.325
Husni, N. L., Rasyad, S., Putra, M. S., Hasan, Y., & Rasyid, J. Al. (2020). PENGAPLIKASIAN SENSOR WARNA PADA NAVIGASI LINE TRACKING ROBOT SAMPAH BERBASIS MIKROKONTROLER. Jurnal Ampere, 4(2), 297–306. https://doi.org/10.31851/ampere.v4i2.3450
Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Enhancing smart farming through the applications of Agriculture 4.0 technologies. International Journal of Intelligent Networks, 3, 150–164. https://doi.org/10.1016/j.ijin.2022.09.004
Jin, Y., Liu, J., Xu, Z., Yuan, S., Li, P., & Wang, J. (2021). Development status and trend of agricultural robot technology. International Journal of Agricultural and Biological Engineering, 14(4), 1–19. https://doi.org/10.25165/IJABE.V14I4.6821
Joni, K., Ulum, M., & Abidin, Z. (2016). Robot Line Follower Berbasis Kendali Proportional-Integral-Derivative (PID) Untuk Lintasan Dengan Sudut Ekstrim. JURNAL INFOTEL - Informatika Telekomunikasi Elektronika, 8(2), 138. https://doi.org/10.20895/infotel.v8i2.129
Jun, J., Kim, J., Seol, J., Kim, J., & Son, H. Il. (2021). Towards an Efficient Tomato Harvesting Robot: 3D Perception, Manipulation, and End-Effector. IEEE Access, 9, 17631–17640. https://doi.org/10.1109/ACCESS.2021.3052240
Kim, J. Y., Pyo, H. R., Jang, I., Kang, J., Ju, B. K., & Ko, K. E. (2022). Tomato harvesting robotic system based on Deep-ToMaToS: Deep learning network using transformation loss for 6D pose estimation of maturity classified tomatoes with side-stem. Computers and Electronics in Agriculture, 201. https://doi.org/10.1016/J.COMPAG.2022.107300
Latif, A., Widodo, H. A., Rahim, R., & Kunal, K. (2020). Implementation of Line Follower Robot based Microcontroller ATMega32A. Journal of Robotics and Control (JRC), 1(3), 70–74. https://doi.org/10.18196/JRC.1316
Li, X., Ma, N., Han, Y., Yang, S., & Zheng, S. (2024). AHPPEBot: Autonomous Robot for Tomato Harvesting based on Phenotyping and Pose Estimation. Proceedings - IEEE International Conference on Robotics and Automation, 18150–18156. https://doi.org/10.1109/ICRA57147.2024.10610454
Oguten, S., & Kabas, B. (2021). PID Controller Optimization for Low-cost Line Follower Robots. https://doi.org/10.13140/RG.2.2.22102.98886
Pamungkas, M. A., Wijayanti, A. T., Harjanti, A. M., Fahriani, A., Berliana, D., Sari, K., Putri, D. S., Fitriawan, H. R., Rahman, M. A., Kamila, S., Aryasatya, N. R., Darojat, I., Putri, S. T., Margita, T. N., Indriani, W., Hudan, Y. N., & Handoyo, G. C. (2023). PEMBERDAYAAN MASYARAKAT MELALUI PENGIMPLEMENTASIAN SMART FARMING GUNA MENINGKATKAN EFISIENSI BUDIDAYA PADI KONVERSI ORGANIK DI DESA GLAGAHWANGI, KABUPATEN KLATEN. Community Development Journal : Jurnal Pengabdian Masyarakat, 4(4), 8496–8503. https://doi.org/10.31004/CDJ.V4I4.19695
Prayudi, M. A., Sianturi, E. haryanto, Rahmad, I. F., & Ummi, K. (2014). Perancangan Robot Line Follower Pemisah Benda Berdasarkan Warna Berbasis Mikrokontroler ATMega16. Creative Information Technology Journal, 1(3), 183–193. https://ojs.amikom.ac.id/index.php/citec/article/view/345
Putri, R. A., Kholis, N., & Baskoro, F. (2021). Automatic Packaging Conveyor Tracking System Based on Arduino Uno Using Photodiodes and SRF04 Ultrasonic Sensors. INAJEEE Indonesian Journal of Electrical and Eletronics Engineering, 4(2), 38–43. https://doi.org/10.26740/inajeee.v4n2.p38-43
Rafi, R. H., Das, S., Ahmed, N., Hossain, I., & Reza, S. M. T. (2017). Design & implementation of a line following robot for irrigation based application. 19th International Conference on Computer and Information Technology, ICCIT 2016, 480–483. https://doi.org/10.1109/ICCITECHN.2016.7860245
Rahadi, R. H., Khair, H., & Syari, M. A. (2025). Design and Build a Robot for Fertilizer Irrigation in Agricultural Land Using IoT. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 5(1), 1190–1195. https://doi.org/10.59934/JAIEA.V5I1.1582
Rahman, A., Raheem, R., & Sharmilan, T. (2022). Design a Smart Mini Robot for Indoor Plant Watering System. International Journal of Sciences: Basic and Applied Research (IJSBAR), 61(1), 1–9. https://gssrr.org/JournalOfBasicAndApplied/article/view/13588
Rajee, A., & Marof, M. R. I. (2024). Project Report on Line Follower Robot: A System Design Using Microcontroller. https://www.researchgate.net/publication/385796819_Project_Report_on_Line_Follower_Robot_A_System_Design_Using_Microcontroller
Ridarmin, R., Fauzansyah, F., Elisawati, E., & Prasetyo, E. (2019). PROTOTYPE ROBOT LINE FOLLOWER ARDUINO UNO MENGGUNAKAN 4 SENSOR TCRT5000. I N F O R M A T I K A, 11(2), 17. https://doi.org/10.36723/juri.v11i2.183
Rif’an, M., & Irianto, K. D. (2024). Precision Agriculture System with IoT: An Approach to Increase Production and Efficiency. International Journal Software Engineering and Computer Science (IJSECS), 4(3), 1305–1316. https://doi.org/10.35870/ijsecs.v4i3.3259
Rodríguez, L. G., Castro-Santos, L., & Galdo, M. I. L. (2025). Techno-Economic Analysis of the Implementation of the IEC 62034:2012 Standard—Automatic Test Systems for Battery-Powered Emergency Escape Lighting—In a 52.8-Meter Multipurpose Vessel. Eng, 6(6), 110. https://doi.org/10.3390/eng6060110
Sarraf, G. (2025, August 20). PID Tuning for Line Follower Robot: Complete How-To Guide – ThinkRobotics.com. ThinkRobotics. https://thinkrobotics.com/blogs/learn/pid-tuning-for-line-follower-robot-complete-how-to-guide
Siegwart, R., Scaramuzza, D., & Nourbakhsh, I. R. (2011). Introduction to autonomous mobile robots, second edition . The MIT Press.
Sutisna, S. P., Siregar, T. H., & Ahmad, A. R. (2023). Design and Function Evaluation of Line Follower Plant Sprayer Robot. Journal of Applied Science and Advanced Engineering, 1(1), 1–4. https://doi.org/10.59097/JASAE.V1I1.7
Vela-Hinojosa, C., Escalona-Buendía, H. B., Mendoza-Espinoza, J. A., Villa-Hernández, J. M., Lobato-Ortíz, R., Rodríguez-Pérez, J. E., & Pérez-Flores, L. J. (2019). Antioxidant Balance and Regulation in Tomato Genotypes of Different Color. Journal of the American Society for Horticultural Science, 144(1), 45–54. https://doi.org/10.21273/JASHS04525-18
Wong, K. Y., Pu, S. C., & Wong, C. C. (2024). A Robotics Experimental Design Method Based on PDCA: A Case Study of Wall-Following Robots. Sensors, 24(6). https://doi.org/10.3390/S24061869
Zhang, B., Zhou, J., Meng, Y., Zhang, N., Gu, B., Yan, Z., & Idris, S. I. (2018). Comparative study of mechanical damage caused by a two-finger tomato gripper with different robotic grasping patterns for harvesting robots. Biosystems Engineering, 171, 245–257. https://doi.org/10.1016/J.BIOSYSTEMSENG.2018.05.003
Zhang, S., Liu, Y., Xiong, K., Tian, Y., Du, Y., Zhu, Z., Du, M., & Zhai, Z. (2024). A review of vision-based crop row detection method: Focusing on field ground autonomous navigation operations. Computers and Electronics in Agriculture, 222. https://doi.org/10.1016/J.COMPAG.2024.109086
Zuhri, M., Irzaman, I., Setiawan, A., Satrio, M. A., Ramdhani, H. N., Iqbal, M., & Baihaki, R. A. (2024). Design and Implementation of Line Follower Robot for Automatic Watering of Orchid Plants. INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH AND ANALYSIS, 07(11). https://doi.org/10.47191/IJMRA/V7-I11-04