NUMERICAL ANALYSIS OF PORE WATER PRESSURE, SEEPAGE, AND SLOPE STABILITY DURING MENINTING DAM PRE-IMPOUNDING
Universitas 17 Agustus 1945 Surabaya
Universitas 17 Agustus 1945 Surabaya
Universitas 17 Agustus 1945 Surabaya
DOI:
https://doi.org/10.56943/jmr.v5i1.920Meninting Dam in West Lombok represents strategic hydraulic infrastructure requiring comprehensive evaluation of pore water pressure, seepage behavior, and slope stability during the initial impoundment phase. This study evaluates the dam's hydraulic and geotechnical response through numerical simulation using SEEP/W and SLOPE/W software, validated against field instrumentation data. Numerical modeling demonstrates that reservoir elevation increase from 168.50 m to 196.06 m induces elevated pore water pressure within the core zone, with a maximum value of 505.55 kPa recorded at monitoring instrument Pe.3. Concurrently, seepage discharge escalates from a range of 0.00378 to 0.0133 m³/s during initial filling to 0.0637 m³/s at near-normal water level. These hydraulic responses remain within acceptable operational parameters for earthfill dam structures. Slope stability analysis yields safety factors ranging from 2.052 to 2.860, substantially exceeding the minimum regulatory threshold of FS ≥ 1.5 and confirming structural stability under normal operational conditions. The findings recommend enhancement of the instrumentation monitoring protocol and establishment of an early warning system to improve detection capabilities for pore water pressure fluctuations, seepage anomalies, and potential slope instability mechanisms.
Keywords: Earthfill Dam Numerical Modeling Pore Water Pressure Seepage Analysis Slope Stability
Adamo, N., Al-Ansari, N., Sissakian, V., Laue, J., & Knutsson, S. (2020). Dam Safety: Use of Instrumentation in Dams. Journal of Earth Sciences and Geotechnical Engineering, 145–202. https://doi.org/10.47260/jesge/1115
Aminfar, M. H., Rastbud, A. A., Ahmadi, H., & Nasseri, A. (2016). Comparing the Geodetical and Geotechnical Methods in Investigating the Deformation of Earthfill Dams; a Case Study of Mahabad Earthfill Dam, Iran. Journal of Engineering Science and Technology, 11(7).
Angelakis, A. N., Baba, A., Valipour, M., Dietrich, J., Fallah-Mehdipour, E., Krasilnikoff, J., Bilgic, E., Passchier, C., Tzanakakis, V. A., Kumar, R., Min, Z., Dercas, N., & Ahmed, A. T. (2024). Water Dams: From Ancient to Present Times and into the Future. Water, 16(13), 1889. https://doi.org/10.3390/w16131889
Chandra, Y., & Shang, L. (2019). Qualitative Research Using R: A Systematic Approach. Springer International Publishing.
Chen, S., Zhong, Q., & Cao, W. (2012). Breach mechanism and numerical simulation for seepage failure of earth-rock dams. Science China Technological Sciences, 55(6), 1757–1764. https://doi.org/10.1007/s11431-012-4768-y
Chen, S., Zhong, Q., & Shen, G. (2019). Numerical modeling of earthen dam breach due to piping failure. Water Science and Engineering, 12(3), 169–178. https://doi.org/10.1016/j.wse.2019.08.001
Ekasari, S., Riman, & Halim, A. (2022). STUDI ANALISIS STABILITAS TUBUH BENDUNGAN PADA BENDUNGAN BANYU URIP DENGAN MENGGUNAKAN SOFTWARE GEOSTUDIO 2018 DI KABUPATEN BOJONEGORO JAWA TIMUR. BOUWPLANK Jurnal Ilmiah Teknik Sipil Dan Lingkungan, 2(1), 1–10. https://doi.org/10.31328/bouwplank.v2i1.231
Fema. (2005). Federal Guidelines for Dam Safety, Earthquake Analyses and Design of Dams, May 2005.
Foster, M., Fell, R., & Spannagle, M. (2000). The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37(5), 1000–1024. https://doi.org/10.1139/t00-030
Fredlund, D. G., & Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. Wiley. https://doi.org/10.1002/9780470172759
Gleick, P. H. (1998). The world’s water : the biennial report on freshwater resources. Island Press.
Hameed, I. H., Al-Shukur, A. H. K., & Jafer, H. M. (2025). Seepage and Seismic Stability Assessment of Mosul Dam: A Numerical Analysis. IOP Conference Series: Earth and Environmental Science, 1545(1), 012040. https://doi.org/10.1088/1755-1315/1545/1/012040
Li, P., & Wu, J. (2023). Water Resources and Sustainable Development. Water, 16(1), 134. https://doi.org/10.3390/w16010134
Morgenstern, N. R., & Price, V. E. (1965). The Analysis of the Stability of General Slip Surfaces. Géotechnique, 15(1), 79–93. https://doi.org/10.1680/geot.1965.15.1.79
Nasser, R., Tzioutzios, D., & Liu, Y. (2024). Statistical Analysis of Global Dam Accidents in the 21st Century: A Focus on Common Features and Causes. Water Resources Management. https://doi.org/10.21203/rs.3.rs-5361886/v1
Nisya, N. A., Setiawan, E., Budianto, M. B., & Hartana, H. (2025). Rule Curve of Meninting Reservoir in West Lombok Regency, West Nusa Tenggara. Asian Journal of Engineering, Social and Health, 4(1), 249–262. https://doi.org/10.46799/ajesh.v4i1.502
Rediasti, F. N. K., Jayadi, R., & Triatmodjo, B. (2023). Optimizing the Use of Meninting Multipurpose Reservoir Water in West Lombok District. Journal of the Civil Engineering Forum, 217–226. https://doi.org/10.22146/jcef.7161
Seyed-Kolbadi, S. M., Hariri-Ardebili, M. A., Mirtaheri, M., & Pourkamali-Anaraki, F. (2020). Instrumented Health Monitoring of an Earth Dam. Infrastructures, 5(3), 26. https://doi.org/10.3390/infrastructures5030026
Telaumbanua, E. P. O., Sinaga, M. U., Indrawan, I., & Sembiring, I. R. A. (2023). THE EVALUATION OF WATER LEVEL ELEVATION DESIGN OF SEI BATANG SERANGAN TOLL BRIDGE ON SEI BATANG SERANGAN RIVERSIDE. Journal of Multidisciplinary Research, 2(3), 34–50. https://doi.org/10.56943/jmr.v2i3.405
United States Bureau of Reclamation. (1987). Design of small dams : a water resources technical publication (3rd edition). Govt. Printing Office.
Wang, B., Liu, L., Li, Y., & Jiang, Q. (2020). Reliability analysis of slopes considering spatial variability of soil properties based on efficiently identified representative slip surfaces. Journal of Rock Mechanics and Geotechnical Engineering, 12(3), 642–655. https://doi.org/10.1016/j.jrmge.2019.12.003
Zhang, R., Li, Y., Goh, A. T. C., Zhang, W., & Chen, Z. (2021). Analysis of ground surface settlement in anisotropic clays using extreme gradient boosting and random forest regression models. Journal of Rock Mechanics and Geotechnical Engineering, 13(6), 1478–1484. https://doi.org/10.1016/j.jrmge.2021.08.001
Zhang, W., Shen, Z., Ren, J., Bian, J., Xu, L., & Chen, G. (2022). Multifield Coupling Numerical Simulation of the Seepage and Stability of Embankment Dams on Deep Overburden Layers. Arabian Journal for Science and Engineering, 47(6), 7293–7308. https://doi.org/10.1007/s13369-021-06112-6
Zielinski, P. A., Giuliani, F., McGrath, S., Netzer, E., De Gennaro Castro, F., Toshev, D., Hartford, D. N. D., Xu, Z., Poláček, J., Kuusiniemi, R., Poupart, M., Sieber, H. U., Bajaj, A. K., Ghaemian, M., Ricciardi, C., Kotsubo, H., Yoo, T.-S., Rafoneke, B., Janssen, J. P. F. M., … Castillejo, R. N. (2011). Dam Safety Management: Operational Phase of the Dam Life Cycle Committee on Dam Safety International Commission on Large Dams (ICOLD). International Commission on Large Dams (ICOLD).