PROTOTYPING MODEL FOR DESIGNING A DESKTOP-BASED TRADING ROBOT APPLICATION
Institut Teknologi Adhi Tama Surabaya
Institut Teknologi Adhi Tama Surabaya
Institut Teknologi Adhi Tama Surabaya
Institut Teknologi Adhi Tama Surabaya
DOI:
https://doi.org/10.56943/joe.v4i4.882The rapid development of the digital economy has stimulated increasing public awareness and literacy regarding investment and trading activities, particularly following the COVID-19 pandemic. This phenomenon has triggered the emergence of various new investment instruments, including cryptocurrency, foreign exchange, and commodity trading such as gold. To minimize trading chaos and failure resulting from emotional and psychological factors, automated trading applications known as Expert Advisors represent viable alternative solutions. This research aims to develop a desktop-based trading robot application using the prototyping model methodology. The research methodology encompassed field surveys, interviews, literature reviews, iterative application development, and comprehensive feasibility testing. The prototyping model consisted of sequential processes: initial requirement gathering, design, prototype construction, customer evaluation, review and modification, customer satisfaction assessment, development, testing, and maintenance. The developed trading robot application was successfully implemented and evaluated through the System Usability Scale (SUS), achieving an aggregate score of 88.21%, indicating excellent usability and substantial user convenience facilitation. Furthermore, the application underwent quality assessment using ISO 9126-3 framework, evaluating Functionality and Usability dimensions. The Functionality factor attained an average score of 89%, confirming that the application functions exceptionally well, while the Usability factor achieved an average score of 95%, demonstrating high usefulness. These findings validate the effectiveness of the prototyping model in developing automated trading systems that balance technical sophistication with user accessibility.
Keywords: Automated Trading System Expert Advisor ISO 9126-3 Prototyping Model System Usability Scale
Alqodri, F., Lestari, S., & Wardani, N. E. (2015). TEKNOLOGI TRADING BERBASIS EXPERT ADVISOR (EA) PADA PASAR VALUTA ASING DENGAN TEKNIK KALENDER EKONOMI. SEMNASTEKNOMEDIA ONLINE, 3(1), 5-12–21. https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/817
Bjarnason, E., Lang, F., & Mjöberg, A. (2023). An empirically based model of software prototyping: a mapping study and a multi-case study. Empirical Software Engineering, 28(5), 115. https://doi.org/10.1007/s10664-023-10331-w
Bois, E. Du, & Gerritsen, B. H. M. (2013). Demonstration of software concepts to multiple stakeholders using modular abstract prototyping. CoDesign, 9(3), 137–159. https://doi.org/10.1080/15710882.2013.824485
Brooke, J. (1996). SUS -- a quick and dirty usability scale. In Usability Evaluation in Industry (pp. 189–194). Taylor & Francis. https://www.researchgate.net/publication/319394819_SUS_--_a_quick_and_dirty_usability_scale
Calvez, A. le, & Cliff, D. (2018). Deep Learning can Replicate Adaptive Traders in a Limit-Order-Book Financial Market. 2018 IEEE Symposium Series on Computational Intelligence (SSCI), 1876–1883. https://doi.org/10.1109/SSCI.2018.8628854
Capiluppi, A., Boldyreff, C., Beecher, K., & Adams, P. J. (2009). Quality Factors and Coding Standards – a Comparison Between Open Source Forges. Electronic Notes in Theoretical Computer Science, 233, 89–103. https://doi.org/10.1016/j.entcs.2009.02.063
Dinata, H. (2018). Implementasi Expert Advisor Dengan Algoritma Fibonacci Pada Analisa Teknikal Untuk Perdagangan Forex [Universitas Kanjuruhan Malang]. http://ejournal.unikama.ac.id/index.php/JoISTIC/
Elder, D. A. (2014). The New Trading for a Living. John Wiley & Sons, Inc.
Garg, I. (2023). ALGORITHMIC TRADING: A COMPREHENSIVE REVIEW OF TECHNOLOGICAL ADVANCEMENTS AND MARKET IMPLICATIONS. International Journal of Social Science & Economic Research, 08(08), 2252–2247. https://doi.org/10.46609/IJSSER.2023.v08i08.012
Gómez, V., & Figueroa, P. (2024). ProtoColVR: Requirements Gathering and Collaborative Rapid Prototyping of VR Training Simulators for Multidisciplinary Teams. IEEE Transactions on Visualization and Computer Graphics, 30(5), 2549–2558. https://doi.org/10.1109/TVCG.2024.3372057
Hamzah, M. L., Ambiyar, A., Rizal, F., Simatupang, W., Irfan, D., & Refdinal, R. (2021). Development of Augmented Reality Application for Learning Computer Network Device. International Journal of Interactive Mobile Technologies (IJIM), 15(12), 47. https://doi.org/10.3991/ijim.v15i12.21993
Hamzah, N., Chuprat, S., Handayani, D. O. D., Xiaoxi, K., & Nagappan, S. D. (2021). Evaluating Quality Characteristics of Ubiquitous Application Through Means of Quality Models using Meta-metrics Approach. Journal of Physics: Conference Series, 2120(1), 012033. https://doi.org/10.1088/1742-6596/2120/1/012033
Horobet, A., Boubaker, S., Belascu, L., Negreanu, C. C., & Dinca, Z. (2024). Technology-driven advancements: Mapping the landscape of algorithmic trading literature. Technological Forecasting and Social Change, 209, 123746. https://doi.org/10.1016/j.techfore.2024.123746
Jamilah, H. M., & Mardiana, L. (2024). THE ROLE OF FINTECH AND FINANCIAL LITERACY ON MSME PERFORMANCE. Journal of Entrepreneurship, 3(2), 36–46. https://doi.org/10.56943/joe.v3i2.560
Kadir, S., & Musdiana, A. D. (2024). BUSINESS RISK AND RETURN CONCEPT IN ISLAMIC INVESTMENT. Journal of Entrepreneurship, 1–12. https://doi.org/10.56943/joe.v3i4.695
Khanesar, M. A., & Branson, D. (2022). Robust Sliding Mode Fuzzy Control of Industrial Robots Using an Extended Kalman Filter Inverse Kinematic Solver. Energies, 15(5), 1876. https://doi.org/10.3390/en15051876
Lu, C. I. (2025). Evaluation of Deep Reinforcement Learning Algorithms for Portfolio Optimisation. http://arxiv.org/abs/2307.07694
Lubis, M. H. R., & Kusuma, I. G. K. C. B. A. (2022). Analisis Pertumbuhan Investor Ritel Pada Masa Pandemi Dan Implikasi Pajak Penghasilan Final Atas Penjualan Saham Di Bursa. JURNAL PAJAK INDONESIA (Indonesian Tax Review), 6(2), 245–264. https://doi.org/10.31092/jpi.v6i2.1854
Macpherson, W., Werner, A., & Mey, M. R. (2022). Industry 4.0: Emerging job categories and associated competencies in the automotive industry in South Africa. SA Journal of Human Resource Management, 20. https://doi.org/10.4102/SAJHRM.V20I0.1916
Mcdowell, B. A. (2008). A Trader’s Money Management System: How to Ensure Profit and Avoid the Risk of Ruin. John Wiley & Sons, Inc.
Mukramin, M., & Hadi, A. (2022). RANCANGA BANGUN APLIKASI PERPUSTAKAAN SEKOLAH BERBASIS WEB. KERNEL: Jurnal Riset Inovasi Bidang Informatika Dan Pendidikan Informatika, 2(2), 69–76. https://doi.org/10.31284/j.kernel.2021.v2i2.1893
Othman, B., & Harun, A. Bin. (2021). The Influence of Service Marketing Mix and Umrah Service Quality on Customer Satisfaction and Customer Loyalty towards Umrah Travel Agents in Malaysia. Technium Social Sciences Journal, 22, 553–618. https://doi.org/10.47577/tssj.v22i1.4330
Putra, P., & Jibril, M. (2024). SISTEM INFORMASI PENJUALAN BAKSO DIWARUNG 3 D BERBASIS WEB. TEKNOFILE : Jurnal Sistem Informasi, 2(6), 474–484. https://jurnal.nawansa.com/index.php/teknofile/article/view/256
Qureshi, S. M., Saeed, A., Ahmad, F., Khattak, A. R., Almotiri, S. H., Al Ghamdi, M. A., & Shah Rukh, M. (2025). Evaluating machine learning models for predictive accuracy in cryptocurrency price forecasting. PeerJ Computer Science, 11, e2626. https://doi.org/10.7717/peerj-cs.2626
Rwiza, S., Kissaka, M., & Kapis, K. (2020). A Metric for Evaluating Security Models based on Implementation of Public Key Infrastructure. International Journal of Wireless and Microwave Technologies, 10(6), 27–35. https://doi.org/10.5815/ijwmt.2020.06.04
Sevastjanov, P., Kaczmarek, K., & Rutkowski, L. (2024). A multi-model approach to the development of algorithmic trading systems for the Forex market. Expert Systems with Applications, 236, 121310. https://doi.org/10.1016/j.eswa.2023.121310
Shavandi, A., & Khedmati, M. (2022). A multi-agent deep reinforcement learning framework for algorithmic trading in financial markets. Expert Systems with Applications, 208, 118124. https://doi.org/10.1016/j.eswa.2022.118124
Susanto, A., & Meiryani. (2019). System Development Method with The Prototype Method. International Journal of Scientific & Technology Research.
Syaputra, R., & Voutama, A. (2021). Perancangan Sistem Expert Advisor Untuk Melakukan Perdagangan Emas Otomatis Pada Software Metatrader 4. INTECOMS: Journal of Information Technology and Computer Science, 4(2). https://journal.ipm2kpe.or.id/index.php/INTECOM/article/view/2773
Todorovic, N., Manojlovic, I., & Budovic, A. (2017). Measuring tourist satisfaction and destination image with HOLSAT. Glasnik Srpskog Geografskog Drustva, 97(2), 87–118. https://doi.org/10.2298/GSGD1702087T
Wang, L., Wang, M.-C., Zhang, Y.-R., Ma, J., Shao, H.-Y., & Chang, Z.-X. (2025). Automated Identification and Representation of System Requirements Based on Large Language Models and Knowledge Graphs. Applied Sciences, 15(7), 3502. https://doi.org/10.3390/app15073502
Wu, M.-E., Syu, J.-H., & Chen, C.-M. (2022). Kelly-Based Options Trading Strategies on Settlement Date via Supervised Learning Algorithms. Computational Economics, 59(4), 1627–1644. https://doi.org/10.1007/s10614-021-10226-2
Yhurinda, A., Putri, P., & Subriadi, A. P. (2019). Software Cost Estimation Using Function Point Analysis. IPTEK Journal of Proceedings Series, 79–83. https://doi.org/10.12962/j23546026.y2019i1.5115
Young, A. R. (2013). Expert Advisor Programming For Meta Trader 5 : Creating automated trading systems in the MQL5 language. Edgehill Publishing. https://archive.org/details/ExpertAdvisorProgrammingForMetaTrader5
Yulianti, Y. (2019). MONEY MANAGEMENT SEBAGAI ALTERNATIF UNTUK MENINGKATKAN PROFIT TRADER PADA PT. VICTORY INTERNATIONAL FUTURES MALANG. Universitas Muhammadiyah Malang.
